If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56=x^2+6
We move all terms to the left:
56-(x^2+6)=0
We get rid of parentheses
-x^2-6+56=0
We add all the numbers together, and all the variables
-1x^2+50=0
a = -1; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-1)·50
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*-1}=\frac{0-10\sqrt{2}}{-2} =-\frac{10\sqrt{2}}{-2} =-\frac{5\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*-1}=\frac{0+10\sqrt{2}}{-2} =\frac{10\sqrt{2}}{-2} =\frac{5\sqrt{2}}{-1} $
| 10x^2+5x-75=0 | | 3x10=14 | | 37-x=25 | | 144/n=n | | 144/n-144=12 | | 0=5r+15 | | 7d-8=25-4d | | 2x-3-5x-4=23 | | 2=-x/4=(-16) | | 16x=(32x+48) | | 0.5x-5=8+2x | | 5(x-1=55 | | 40-u=7u | | (3x-4)^2=0 | | 1/2x-5=8+2x | | -6x-8=7x+31 | | (x+1)2-32=0 | | 3x+4/5-6=-1 | | 3-10m=2m-9 | | -1(x)=(1x•1x•1x)+(2x•2x)-3 | | X^2+3x+1/4=0 | | 52(0.47-x)^2=24x^2 | | 12x-10=25 | | s/7+7=11 | | 6x-9=-x+23 | | 3x-4=6x- | | 1/2y-3=5-3/4y | | y-72/4=7 | | |4x-15|+8=3 | | w/3+21=28 | | -9x-5=2x-71 | | 9w-7w=18 |